При каких условиях возникают гармонические колебания. Уравнение гармонических колебаний

Мы рассмотрели несколько физически совершенно различных систем, и убедились, что уравнения движения приводятся к одной и той же форме

Различия между физическими системами проявляются лишь в различном определении величины и в различном физическом смысле переменной x : это может быть координата, угол, заряд, ток и т. д. Отметим, что при этом, как следует из самой структуры уравнения (1.18), величина всегда имеет размерность обратного времени.

Уравнение (1.18) описывает так называемые гармонические колебания .

Уравнение гармонических колебаний (1.18) является линейным дифференциальным уравнением второго порядка (так как оно содержит вторую производную от переменной x ). Линейность уравнения означает, что

    если какая-то функция x(t) является решением этого уравнения, то функция Cx(t) также будет его решением (C – произвольная постоянная);

    если функции x 1 (t) и x 2 (t) являются решениями этого уравнения, то их сумма x 1 (t) + x 2 (t) также будет решением того же уравнения.

Доказана также математическая теорема, согласно которой уравнение второго порядка имеет два независимых решения. Все остальные решения, согласно свойствам линейности, могут быть получены как их линейные комбинации. Непосредственным дифференцированием легко проверить, что независимые функции и удовлетворяют уравнению (1.18). Значит, общее решение этого уравнения имеет вид:

где C 1 , C 2 - произвольные постоянные. Это решение может быть представлено и в другом виде. Введем величину

и определим угол соотношениями:

Тогда общее решение (1.19) записывается как

Согласно формулам тригонометрии, выражение в скобках равно

Окончательно приходим к общему решению уравнения гармонических колебаний в виде:

Неотрицательная величина A называется амплитудой колебания , - начальной фазой колебания . Весь аргумент косинуса - комбинация - называется фазой колебания .

Выражения (1.19) и (1.23) совершенно эквивалентны, так что мы можем пользоваться любым их них, исходя из соображений простоты. Оба решения являются периодическими функциями времени. Действительно, синус и косинус периодичны с периодом . Поэтому различные состояния системы, совершающей гармонические колебания, повторяются через промежуток времени t* , за который фаза колебания получает приращение, кратное :

Отсюда следует, что

Наименьшее из этих времен

называется периодом колебаний (рис. 1.8), а - его круговой (циклической) частотой .

Рис. 1.8.

Используют также и частоту колебаний

Соответственно, круговая частота равна числу колебаний за секунд.

Итак, если система в момент времени t характеризуется значением переменной x(t), то, то же самое значение, переменная будет иметь через промежуток времени (рис.1.9), то есть

Это же значение, естественно, повторится через время 2T , ЗT и т. д.

Рис. 1.9. Период колебаний

В общее решение входят две произвольные постоянные (C 1 , C 2 или A , a ), значения которых должны определяться двумя начальными условиями . Обычно (хотя и не обязательно) их роль играют начальные значения переменной x(0) и ее производной .

Приведем пример. Пусть решение (1.19) уравнения гармонических колебаний описывает движение пружинного маятника. Значения произвольных постоянных зависят от способа, каким мы вывели маятник из состояния равновесия. Например, мы оттянули пружину на расстояние и отпустили шарик без начальной скорости. В этом случае

Подставляя t = 0 в (1.19), находим значение постоянной С 2

Решение, таким образом, имеет вид:

Скорость груза находим дифференцированием по времени

Подставляя сюда t = 0, находим постоянную С 1 :

Окончательно

Сравнивая с (1.23), находим, что - это амплитуда колебаний, а его начальная фаза равна нулю: .

Выведем теперь маятник из равновесия другим способом. Ударим по грузу, так что он приобретет начальную скорость , но практически не сместится за время удара. Имеем тогда другие начальные условия:

наше решение имеет вид

Скорость груза будет изменяться по закону:

Подставим сюда :

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

где х - значение изменяющейся величины, t - время, остальные параметры - постоянные: А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

Виды колебаний

    Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

    Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Уравнение гармонических колебаний

Уравнение (1)

дает зависимость колеблющейся величины S от времени t; это и есть уравнение свободных гармонических колебаний в явном виде. Однако обычно под уравнением колебаний понимают иную запись этого уравнения, в дифференциальной форме. Возьмем для определенности уравнение (1) в виде

дважды продифференцируем его по времени:

Видно, что выполняется следующее соотношение:

которое и называется уравнением свободных гармонических колебаний (в дифференциальной форме). Уравнение (1) является решением дифференциального уравнения (2). Поскольку уравнение (2) - дифференциальное уравнение второго порядка, необходимы два начальных условия для получения полного решения (то есть определения входящих в уравнение (1) констант A и  ); например, положение и скорость колебательной системы при t = 0.

Математи́ческий ма́ятник - осциллятор, представляющий собой механическую систему, состоящую изматериальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины l неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит от амплитуды и массы маятника.

Физический маятник - осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.


Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила , скорость и ускорение , тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Возбуждение гармонических механических колебаний

Анимация

Описание

Если колебательную систему каким-либо способом вывести из равновесия, а затем предоставить ее самой себе, то она будет совершать гармонические колебания при условии, что в системе отсутствует трение, а потенциальная энергия квадратично зависит от обобщенной координаты (т.н. свободные или собственные колебания). Чтобы вывести систему из равновесного состояния, ей необходимо сообщить энергию. Для этого необходимо сместить систему из равновесного положения, или придать ей некоторую скорость, или сделать и то и другое одновременно. При наличии ньютоновского вязкого трения колебательная система также может совершать гармонические колебания, но лишь под действием гармонической вынуждающей силы (т.н. вынужденные колебания).

Рассмотрим механическую колебательную систему, свободное движение которой описывается функцией

x(t) = A cos (w t + a ) . (1)

Такая система называется гармоническим осциллятором . Функция (1) описывает так называемые гармонические колебания. Здесь положительная величина A называется амплитудой колебаний, w - круговой, или циклической частотой. Функция

j = w t + a (2)

называется фазой колебаний, а величина a - начальной фазой. Период колебаний связан с их частотой соотношением

T = 2 p / w . (3)

График функции показан на рис. 1.

Зависимость координаты от времени при гармонических колебаниях

Рис. 1

Функция (1) является решением дифференциального уравнения второго порядка

d 2 x /dt 2 + w 2 x = 0, (4)

которое выражает некоторый физический закон, определяющий поведение рассматриваемой системы (как правило второй закон Ньютона или, в случае использования криволинейных обобщенных координат, его следствия типа уравнений Эйлера-Лагранжа или уравнений Гамильтона). Амплитуда и начальная фаза колебаний могут быть найдены из начальных условий

x(0) = x o ; d x(0) /dt = v o ,

которые определяют состояние колебательной системы в момент времени t = 0. В этих условиях x o и v o - произвольные постоянные. Начальные условия приводят к формулам:

A = sqrt (x o 2 + (v o / k) 2 ) ; tg a = - v o / w x o .

Внешнее воздействие на колебательную систему можно описать посредством приведенной силы f = f (t ). Для пружинного маятника приведенная сила f = F (t )/m , где F - внешняя сила. В этом случае функция x = x (t ) будет удовлетворять уравнению:

d 2 x /dt 2 + 2 b dx /dt + w o 2 x = f(t) . (5)

Второе слагаемое в левой части этого уравнения описывает действие на движущееся тело силы трения. Свободные колебания тела в этом случае не будут гармоническими. Пусть приведенная сила f = f (t )является гармонической функцией от времени, т.е. зависит от времени по закону:

f (t ) = f m cos W t ,

где f m - амплитуда вынуждающей силы,

W - частота ее изменения.

В этом случае вынужденные колебания будут описываться функцией:

x (t ) = A cos (W t + a ),

т.е. будут представлять собой гармонические колебания с частотой W вынуждающей силы. Амплитуда A вынужденных колебаний зависит от частоты W согласно формуле:

A(W ) = f m / sqrt ((w o 2 - W 2 ) 2 + 4 b 2 W 2 ) .

Начальная фаза вынужденных колебаний a определяется формулой

a = - arctg (2 bW / (w o 2 - W 2 )) .

Временные характеристики

Время инициации (log to от -3 до 1);

Время существования (log tc от 13 до 15);

Время деградации (log td от -4 до -3);

Время оптимального проявления (log tk от -3 до -2).

Меняется во времени по синусоидальному закону:

где х — значение колеблющейся величины в момент времени t , А — амплитуда , ω — круговая частота, φ — начальная фаза колебаний, (φt + φ ) — полная фаза колебаний . При этом величины А , ω и φ — постоянные.

Для механических колебаний колеблющейся величиной х являются, в частности, смещение и скорость , для электрических колебаний — напряжение и сила тока .

Гармонические колебания занимают особое место среди всех видов колебаний, т. к. это единственный тип колебаний, форма которых не искажается при прохождении через любую однородную среду, т. е. волны, распространяющиеся от источника гармонических колебаний, также будут гармоническими. Любое негармоническое колебание может быть представлено в виде сумм (интеграла) различных гармонических колебаний (в виде спектра гармонических колебаний).

Превращения энергии при гармонических колебаниях.

В процессе колебаний происходит переход потенциальной энергии W p в кинетическую W k и наоборот. В положении максимального отклонения от положения равновесия потенциальная энергия максимальна, кинетическая равна нулю. По мере возвращения к положению равновесия скорость колеблющегося тела растет, а вместе с ней растет и кинетическая энергия, достигая максимума в положении равновесия. Потенциальная энергия при этом падает до нуля. Дальней-шее движение происходит с уменьшением скорости, которая падает до нуля, когда отклонение достигает своего второго максимума. Потенциальная энергия здесь увеличивается до своего перво-начального (максимального) значения (при отсутствии трения). Таким образом, колебания кинетической и потенциальной энергий происходят с удвоенной (по сравнению с колебаниями самого маятника) частотой и находятся в противофазе (т. е. между ними существует сдвиг фаз, равный π ). Полная энергия колебаний W остается неизменной. Для тела, колеблющегося под действием силы упругости , она равна:

где v m максимальная скорость тела (в положении равновесия), х m = А — амплитуда.

Из-за наличия трения и сопротивления среды свободные колебания затухают: их энергия и амплитуда с течением времени уменьшаются. Поэтому на практике чаще используют не свободные, а вынужденные колебания.